An approximate method for solving fractional system differential equations
Authors
Abstract:
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all points in this interval. A number of clear and specific examples have been enumerated for the purpose of illustrating the simplicity and efficiency of the suggested method.
similar resources
DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING FUZZY FRACTIONAL HEAT EQUATIONS
In this paper, the differential transformation method (DTM) was applied to solve fuzzy fractional heat equations. The elementary properties of this method were given. The approximate and exact solutions of these equations were calculated in the form of series with easily computable terms. The proposed method was also illustrated by some examples. The results revealed that DTM is a highly effect...
full textLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
full textAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
full textSolving Fuzzy Impulsive Fractional Differential Equations by Homotopy Perturbation Method
In this paper, we study semi-analytical methods entitled Homotopy pertourbation method (HPM) to solve fuzzy impulsive fractional differential equations based on the concept of generalized Hukuhara differentiability. At the end first of Homotopy pertourbation method is defined and its properties are considered completely. Then econvergence theorem for the solution are proved and we will show tha...
full textApproximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
full textA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
full textMy Resources
Journal title
volume 14 issue 2
pages 1- 17
publication date 2020-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023